Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Research on High Strength Material and Its Surface Modification for Parts Used Under Rolling Contact Cycles

2004-03-08
2004-01-0633
This paper describes a newly developed steel composition and surface modification methods for improving the rolling contact fatigue strength of parts used in transmission systems, especially continuously variable transmissions (CVTs) to increase their torque capacity. The mechanisms of two types of typical rolling contact fatigue phenomenon in case hardening steel were examined with the aim of improving rolling contact fatigue strength. One concerned white etching constituents (WEC) and the other one concerned peculiar microstructural changes caused by hydrogen originating from decomposition of the lubrication oil as a result of repeated rolling contact stress cycles. The rolling contact fatigue strength limit due to WEC has been improved markedly by dispersing fine M23C6 alloy carbides in the martensite matrix at the subsurface layer of parts.
Technical Paper

A New Transient NOx Direct Catalytic Decomposition on a Rh-based Catalyst

2003-10-27
2003-01-3243
It has been found that over Rh/a specified support NOx is eliminated using rich/lean excursions in a different reaction mechanism from a Lean NOx Trap system, where NO is decomposed into nitrogen and oxygen. The contribution of the transient NOx direct decomposition to NOx elimination depends on both reaction conditions and supports. 0.1-0.5wt%Rh and 0.5wt%Pd/a specified support: X can mainly catalyze the transient NO decomposition. On the other hand, on another Rh-based catalyst NO reduction proceeds mainly in the Lean NOx trap system. As expected from the NO elimination mechanism, the newly developed catalyst has shown a high tolerance against SOx.
Technical Paper

Development of a New 5.6L Nissan V8 Gasoline Engine

2004-03-08
2004-01-0985
This paper describes a new 5.6-liter DOHC V8 engine, VK56DE, which was developed for use on a new full-size sport utility vehicle and a full-size pickup truck. To meet the demands for acceleration performance when merging into freeway traffic, passing or re-acceleration performance from low speed in city driving and hill-climbing or passing performance when towing, the VK56DE engine produces high output power at top speed and also generates ample torque at low and middle engine speeds (90% of its maximum torque is available at speeds as low as 2500 rpm). Furthermore, this engine achieves top-level driving comfort in its class as a result of being derived from the VK45DE engine that was developed for use on a sporty luxury sedan. Development efforts were focused on how to balance the required performance with the need for quietness and smoothness.
Technical Paper

Technique for Analyzing Swirl Injectors of Direct-Injection Gasoline Engines

2001-03-05
2001-01-0964
This paper describes the numerical and experimental approaches that were applied to study swirl injectors that are widely used in direct-injection gasoline engines. As the numerical approach, the fuel and air flow inside an injector was first analyzed by using a two-phase flow analysis method [VOF (Volume of Fluid) model]. A time-series analysis was made of the flow though the injector and also of the air cavity that forms at the nozzle and influences fuel atomization. The calculated results made clear the process from initial spray formation to liquid film formation. Spray droplet formation was then analyzed with the synthesized spheroid particle (SSP) method. As the experimental approach, in order to measure the cavity factor that represents the liquid film thickness, nozzle exit flow velocities were measured by particle image velocimetry (PIV).
Technical Paper

Numerical Analysis of the Exhaust Gas Flow and Heat Transfer in a Close-Coupled Catalytic Converter System During Warm-Up

2001-03-05
2001-01-0943
A new multidimensional calculation method has been developed to simulate the warm-up characteristics of close-coupled catalytic converter systems. First, a one-dimensional gas exchange simulation and a three-dimensional exhaust gas flow calculation are combined to simulate the pulsation gas flow caused by the gas exchange process. The gas flow calculation and a heat transfer calculation are then combined to simulate heat transfer in the exhaust manifold and the catalyst honeycomb under pulsation flow. The predicted warm-up characteristics of the systems examined agreed well with the experimental data. In this simulation, CPU time was reduced greatly through the use of new calculation methods. Finally, the warm-up process of close-coupled catalysts is analyzed in detail with this simulation method. The design requirements for improving warm-up characteristics have been made clear.
Technical Paper

Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards

2001-03-05
2001-01-0200
Experimental investigations were conducted with a direct-injection diesel engine to improve exhaust emission, especially nitrogen oxide (NOx) and particulate matter (PM), without increasing fuel consumption. As a result of this work, a new combustion concept, called Modulated Kinetics (MK) combustion, has been developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion, respectively. The characteristics of a new combustion concept were investigated using a single cylinder DI diesel engine and combustion photographs. The low compression ratio, EGR cooling and high injection pressure was applied with a multi-cylinder test engine to accomplish premixed combustion at high load region. Combustion chamber specifications have been optimized to avoid the increase of cold-start HC emissions due to a low compression ratio.
Technical Paper

Combination of Combustion Concept and Fuel Property for Ultra-Clean DI Diesel

2004-06-08
2004-01-1868
Experimental investigations were previously conducted with a direct-injection diesel engine with the aim of reducing exhaust emissions, especially nitrogen oxides (NOx) and particulate matter (PM). As a result of that work, a combustion concept, called Modulated Kinetics (MK) combustion, was developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion to achieve a cleaner diesel engine. In subsequent work, it was found that applying a low compression ratio was effective in expanding the MK combustion region on the high-load side. The MK concept was then combined with an exhaust after-treatment system and applied to a test vehicle. The results indicated the attainment of ULEV emission levels, albeit in laboratory evaluations. In the present work, the combination of the MK combustion concept and certain fuel properties has been experimentally investigated with the aim of reducing exhaust emissions further.
Technical Paper

Study of Fuel Dilution in Direct-Injection and Multipoint Injection Gasoline Engines

2002-05-06
2002-01-1647
Fuel dilution is one of the phenomena requiring attention in direct-injection engines. This study examined the factors contributing to increased fuel dilution in direct-injection and conventional multipoint injection gasoline engines, focusing in particular on fuel dilution in the oil pan. The results showed that fuel dilution is affected by fuel consumption, fuel properties and oil/cooling water temperatures in multipoint injection engines. In addition to these factors, fuel injection timing is another factor that increases fuel dilution in direct-injection engines.
Technical Paper

Study of an Integrated Diesel Engine-CVT Control Algorithm for Improving Drivability and Exhaust Emission Performance

2001-10-01
2001-01-3452
Diesel engines have attracted more attention in recent years as one means of reducing carbon dioxide (CO2) emissions from motor vehicles. One of the major issues for diesel engines is exhaust emissions performance. Diesel engines also face various difficulties in providing the driving force demanded by the driver because of their greater inertia than that of gasoline engines. Meanwhile, continuously variable transmissions (CVTs) have been popularized as gearboxes that execute ratio changes continuously without generating shift shock. The aim of this research is to achieve higher levels of drivability and exhaust emissions performance by mating a CVT to a diesel engine and making maximum use of the continuous ratio change capability. An integrated engine-CVT control algorithm that can freely set the driving force and also the engine operating conditions for generating that driving force has been developed through this study.
Technical Paper

Development of Thinnest Wall Catalyst Substrate

2002-03-04
2002-01-0358
The thinnest wall thickness of automotive catalyst substrates has previously been 30 μm for metal substrates and 50 μm for ceramic substrates. This paper describes a newly developed catalyst substrate that is the world's first to achieve 20-μm-thick cell walls. This catalyst substrate features low thermal capacity and low pressure loss. Generally, a thinner cell wall decreases substrate strength and heat shock resistance. However, the development of a “diffused junction method”, replacing the previous “wax bonding method”, and a small waved foil has overcome these problems. This diffused junction method made it possible to strengthen the contact points between the inner waved foil and the rolled foil compared with previous substrates. It was also found that heat shock resistance at high temperature can be much improved by applying a slight wave to the foil instead of using a plane foil.
Technical Paper

Novel Analysis Approach for Better Understanding of Fuel and Engine Effects on Diesel Exhaust Emission - JCAP Combustion Analysis Working Group Report Part II

2002-10-21
2002-01-2825
1 A novel analysis approach called “Regression Density method” was developed for better understanding of fuel property effects on exhaust emission. The approach was applied to diesel emission data obtained in JCAP programs and emission models were conducted to analyze the effects of fuel properties and engine conditions on emissions. By introducing this analysis method, the relationship between density factor and aromatics factor (chemical composition factor) was identified, however, they have been reported previously as dominant factors in fuel properties. The effects of engine conditions and fuel properties on emissions were investigated quantitatively based on the statistically conducted emission models to clarify universal ways to emission reduction. The mechanism of emission formation of vehicles and engines with characteristic behavior was also examined.
Technical Paper

Parametric Study and Clarification of Determination Factors of Diesel Exhaust Emission Using a Single Cylinder Engine and Model Fuels - JCAP Combustion Analysis Working Group Report Part I

2002-10-21
2002-01-2824
Single cylinder engine testing was carried out to clearly understand the test results of multi-cylinder engines reported by the Diesel WG in JCAP (Japan Clean Air Program) (1), (2), (3) and (4). In this tests, engine specifications such as fuel injection pressure, nozzle hole diameter, turbo-charging pressure, EGR rate, and fuel properties such as 1-, 2-, 3-ring aromatics content, n-,i-paraffins content, and T90 were parametrically changed and their influence on the emissions were studied. PM emission generally increased in each engine condition with increased aromatic contents and T90. In particular, multi ring aromatics brought about large increases in PM regardless of the engine conditions. The influence of fuel properties on NOx emission is smaller than the influence on PM emission. Some other fuels that have various side chain structures of 1-ring aromatics, normal paraffins only and various naphthene contents were also investigated.
Technical Paper

Dual Mode Combustion Concept With Premixed Diesel Combustion by Direct Injection Near Top Dead Center

2003-03-03
2003-01-0742
Premixed diesel combustion was performed and various characteristics examined with fuel injection timing near top dead center (TDC). A lean and uniform fuel-air mixture was found to during 25° C.A. with a narrow injection angle (27.5° with respect to horizontal), shallow dish combustion chamber, and low cetane number fuel (CN=19). These conditions enabled low NOx combustion in no exhaust gas re-circulation (EGR), despite fuel injection timing around 25° BTDC. Furthermore, HC emissions were lower than with premixed diesel combustion of the early injection type. Because fuel injection timing was near TDC, the volume of the mixture dispersed to a squish area was decreased. This combustion mode was also achieved with a high-cetane fuel (conventional diesel fuel) and high EGR rate conditions. However, in this case, it was difficult to adjust the ignition timing near top dead center. This combustion system also showed good performance in conventional diesel combustion mode.
Technical Paper

Development of Third Generation of Gasoline P-ZEV Technology

2003-03-03
2003-01-0816
This paper describes the third generation of the partial zero emission vehicle (P-ZEV) technology originally adopted on the Nissan Sentra CA sold in California. The 2000 Nissan Sentra CA became the world's first gasoline-fueled car to qualify for P-ZEV credits from the California Air Resources Board (CARB). The third-generation P-ZEV system has been substantially reduced in size and cost, compared with the Sentra CA system, enabling it to be used on high-volume models. This system complies with the P-ZEV requirements, including those for zero evaporative emissions and Onboard Diagnostics II (OBD-II). To achieve a more compact and lower-cost system, an ultra-thin-walled catalyst substrate, the world's first to attain a 1.8-mil wall thickness, has been adopted along with catalysts that display excellent low-temperature activity. As a result, low-temperature catalyst activity has been significantly improved.
Technical Paper

Emission Reduction Technologies Adopted for Japan U-LEV Certified Vehicles

2003-05-19
2003-01-1872
This paper describes the emission reduction technologies applied to 4- and 6-cylinder engines used on Japanese market models certified as ultra-low emission vehicles (U-LEVs) in Japan. To qualify for this rigorous U-LEV certification, a vehicle must reduce hydrocarbon (HC) and nitrogen oxide (NOx) emissions by an additional 75% from the levels mandated by Japan's 2000 exhaust emission regulations. Nearly all Nissan Japanese models fitted with a gasoline engine, ranging from in-line 4-cylinder engines to V6 engines, have now been certified as U-LEVs. This has been accomplished by further improving the emission reduction technologies that were developed for the Sentra CA, which was launched in the U.S. market in 2000 as the world's first gasoline-fueled vehicle to qualify for Partial Zero Emission Vehicle (P-ZEV) credits from the California Air Resources Board. The specific new technologies involved are as follows.
Technical Paper

Development of a New HC-Adsorption Three-Way Catalyst System for Partial-ZEV Performance

2003-05-19
2003-01-1861
This paper describes a newly developed HC-adsorption three-way catalyst and adsorption system that reduce cold-start HC emissions with high efficiency. This system is the first of its kind anywhere in the world to be implemented on production vehicles. An overview is given of the various improvements made to achieve higher cold-start HC conversion efficiency. Improvement of conversion performance was accomplished by (1) increasing the thermal stability of the HC adsorbent, (2) improving desorbed HC conversion efficiency and durability and (3) optimizing the geometric surface area (GSA) of the substrate. Concretely, the thermal stability of the adsorbent was improved by enhancing the high-temperature durability of zeolite. Improvement of desorbed HC conversion efficiency was accomplished by improving the OSC material so as to match the temperature rise characteristic and usage temperature of the catalyst.
Technical Paper

Development of High Strength Transmission Gears

1992-02-01
920761
High strength transmission gears have been developed for use in the final gear set of front-wheel-drive vehicles. The steel used as the gear material has a higher molybdenum content, allowing more austenite to be retained following carburizing than is possible with chromium steel. As a result, the steel can be subjected to higher intensity shot peening by using harder peening particles which are projected by an air-nozzle peening system. With this procedure, the fatigue strength of the gears can be increased 1.6 times over that of conventional gears.
Technical Paper

Analysis of Interior Airflow in a Full-Scale Passenger-Compartment Model Using a Laser-Light-Sheet Method

1992-02-01
920206
Flow velocity distributions in the passenger compartment were measured from visualized images of particle flow paths obtained with a full-scale model. The flow paths were visualized using an approach that combined a particle tracing method with a pulse-laser light technique. Air was used as the fluid medium with the full-scale passenger compartment model and water was used as the fluid medium with a one-fourth scale model. A comparison of the results obtained with the two models confirmed that there was good agreement between the flow velocity distributions. Using the full-scale model, measurements were also made of the flow velocity distributions when two dummies were placed in the front-seats.
Technical Paper

Performance and Exhaust Emissions of Nissan FFV NX Coupe

1992-02-01
920299
The FFVs under study operates on either M85 or M0 or any mixture of the two. Nissan has been actively conducting reseach and development on flexible fuel vehicles (FFVs) to explore the possibilities for long-range energy conservation and air quality improvement. The engine converted for use in these FFVs is a 1.6 liter, four-cylinder in-line powerplant, with dual overhead camshafts and four valves per cylinder. It employs the Nissan Variable valve timing Control System (NVCS). The fuel sensor for measuring the methanol concentration in the fuel has been improved both in terms of accuracy and durability. This paper describes the engine performance and exhaust emission levels (formaldehydes unburned methanol and HC emissions) obtained with both M85 and M0.
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
X